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Cataloging the diverse cellular architecture of the primate brain is crucial for understanding cognition, behavior,
and disease in humans. Here, we generated a brain-wide single-cell multimodal molecular atlas of the rhesus
macaque brain. Together, we profiled 2.58M transcriptomes and 1.59M epigenomes from single nuclei sampled
from 30 regions across the adult brain. Cell composition differed extensively across the brain, revealing cellular
signatures of region-specific functions. We also identified 1.19 M candidate regulatory elements, many previ-
ously unidentified, allowing us to explore the landscape of cis-regulatory grammar and neurological disease risk
in a cell type–specific manner. Altogether, this multi-omic atlas provides an open resource for investigating the
evolution of the human brain and identifying novel targets for disease interventions.
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INTRODUCTION
The cellular and molecular origins of complex human thought and
behavior remain largely a mystery. Historically, proposed explana-
tions have centered on the substantial relative size (1–3), prodigious
number of cells (4), or the large cortical surface area and thickness
(5) of the human brain. These explanations in isolation, however,
fail to explain the many uniquely human faculties, nor do they
explain the extreme variety and complexity of impairments that ac-
company human neurodevelopmental, neuropsychiatric, and neu-
rodegenerative disorders (6). The human brain is composed of
myriad cell types, and this cellular heterogeneity presumably con-
tributes to our cognitive and behavioral complexity (7, 8). Support-
ing this hypothesis is the observation that the number of distinct cell
types in the brain is positively correlated with behavioral complexity
across vertebrates (9). In recent decades, it has been proposed that
certain aspects of human cognition are supported by specific cell

types such as von Economo neurons (10) and “mirror neurons”
(11), which have been hypothesized to support social intuition
and empathy, respectively. These propositions, however, remain
largely untested due to gaps in our understanding of the cellular
landscape of the human brain and, crucially, differences in cell
type composition and regional heterogeneity among the brains of
humans, nonhuman primates, and other animals.

In recent years, the application of rapidly developing single-cell
technologies to the brain has begun to address these gaps. Single-
cell molecular surveys of targeted regions of the mouse and
human brain, for example, have revealed specialized species-specific
cell types—e.g., rosehip neurons in humans (12)—and regional
biases in cell type distribution and function [e.g., (13)]. Such
atlases are yielding unprecedented cross-species insights into the
cellular architecture supporting the structure and function of the
brain (14, 15), but the general paucity of comparative nonhuman
primate brain atlases has left a conspicuous gap (16). Moreover,
much effort has focused on single molecular modalities (e.g., tran-
scriptomics), typically in only one or a few regions, leaving a lacuna
in our understanding of the molecular mechanisms underlying cell
function across much of the primate brain.

Here, we generated a 4.2 million cell (combined) transcriptomic
and epigenomic atlas across the brain of the rhesus macaque
(Macaca mulatta), the most widely used nonhuman primate
model organism for studies of human perception, cognition,
aging, and neurological disease (17). These single-cell profiles
derive from 30 distinct brain regions that collectively represent
major cortical, subcortical, and cerebellar areas involved in
sensory, cognitive, emotional, and motor functions. Many of
these regions are also implicated in one or more clinically relevant
neurological disorders. By integrating measures of gene expression
and chromatin accessibility, we discover molecular signatures that
define cell types across the macaque brain, characterize their distri-
bution and molecular function across disparate anatomical regions,
and nominate sets of cis-regulatory regions that likely contribute to
mature cell fate and function across the brain.
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RESULTS
A molecular taxonomy of cell types across the
primate brain
We generated single-nucleus RNA sequencing (snRNA-seq) data
from 30 distinct regions across the cortex, subcortex, cerebellum,
and brainstem (N = 5 animals; three females) using three-level
single-cell combinatorial indexing RNA-seq (sci-RNA-seq3)
(Fig. 1A and table S1) (18, 19). With the original sci-RNA-seq3 pro-
tocol (20), we generated 1,008,204 single-nucleus transcriptomes
from 110 age-, sex-, and hemisphere-matched samples representing
28 brain regions of 10 year-old (mid-adult aged) macaques (N = 3
animals; two females). Over the course of the study, we implement-
ed improvements in nuclei isolation and preservation (21), which
increased nuclear transcriptome recovery by ~60% [median
unique molecular indices (UMIs), before = 202, after = 320] and,
consequently, the number of nuclei passing our UMI threshold.
With the improved protocol, we generated an additional
1,702,081 single-nucleus transcriptomes from the right hemisphere
of two animals, the vast majority (N = 1,579,908) of which were
sampled from 27 brain regions of a single 10-year-old female
macaque. Altogether, after applying quality control (QC) filters
(Materials and Methods and figs. S1 and S2), we recovered tran-
scriptome profiles for 2,583,967 nuclei (median UMI per cell =
265, median genes expressed per cell = 221; table S2).

Controlling for batch effects across sequencing runs (Materials
and Methods and fig. S4), we jointly clustered single-cell profiles
across all sampled brain regions to identify 17 molecularly distinct
cell types, which we refer to as “cell classes” (Fig. 1, B and C). On the
basis of established cell markers (fig. S5 and table S3), we annotated
these 17 cell classes as either: (i) neuronal cells, including cortical
glutamatergic neurons (CAMK2A), cortical GABAergic neurons
(GAD1 and GAD2), basket cells (GRID2 and SORCS3), other cere-
bellar neurons (primarily granule cells; GRM4), medium spiny
neurons (DACH1, PPP1R1B, and BCL11B), serotonergic neurons
(TPH2), dopaminergic neurons (TH and DBH); or (ii) non-neuro-
nal cells, including microglia (DOCK2), oligodendrocyte precursor
cells (OPCs; VCAN), astrocytes (ALDH1A1 and GFAP), oligoden-
drocytes (MOG and MBP), vascular cells (CFH), and ependymal
cells (FOXJ1). Our broad survey also captured four rare cell popu-
lations that, to our knowledge, have not yet been identified in other
studies: three RBFOX3+ (NeuN+) neuron-like populations (marker
genes: APOA2,N = 7055 cells; F5,N = 880; KIR2DL1/2,N = 84) and
one RBFOX3− microglia-like population (marker gene: KIR3DL1/
2+, N = 44 cells, also P2RY12+/PTPRC+/ENTPD1+). Given their
rarity, we removed these four cell populations from downstream
analyses. Hierarchical clustering of cell classes by the top 50 princi-
pal components of gene expression largely recapitulated broad on-
togenetic relationships, with most neuronal classes clustering
together (dopaminergic neurons being the exception) and the two
mesoderm-derived classes (microglia and vascular cells) clustering
together (fig. S6A). Further, analysis of pathways associated with
gene expression of each cell class revealed known molecular physi-
ological processes characteristic of cell classes (tables S4 and S5). For
example, we found that gene expression in glutamatergic and GA-
BAergic neurons were associated with synapse assembly/function,
oligodendrocyte gene expression was associated with myelination,
and microglia gene expression was associated with immune pro-
cesses including inflammation. Dopaminergic and serotonergic

neurons had high activation levels of expected pathways such as ty-
rosine hydroxylase/catecholamine and serotonin/melatonin bio-
synthesis, respectively.

By sampling across a broad range of anatomical regions within
the same individuals, we were able to characterize cellular compo-
sition across 30 distinct brain regions—to our knowledge, the most
regionally expansive nonhuman primate single-cell brain atlas to
date (Fig. 1, D and E). The distribution of major cell classes was ba-
lanced between sexes and hemispheres (fig. S7) but differed exten-
sively across regions, reflecting the cellular makeup underlying
region-specific functions (Fig. 1E). Unsupervised hierarchical clus-
tering of brain regions according to cell class composition for the
most part conformed to broader anatomical categorizations, with
regions of the cortex, subcortex, brainstem, and cerebellum
usually grouping together (fig. S6B), which was also the case
when clustering regions based on the top 50 principal components
of gene expression (fig. S6B). Two of these four broad regional
classes were composed primarily of a single cell class: In the
cortex (N = 16 regions, table S6), glutamatergic neurons were the
most abundant cell type (mean = 63.7% of all cells per sample)
and outnumbered GABAergic neurons by almost fourfold
(Fig. 1E; mean = 17.4%), while the cerebellum (N = 2 regions)
was composed almost entirely of cerebellar neurons (mean =
85.1%). In contrast, the subcortex (N = 8 regions) and brainstem
(N = 4 regions) were more heterogeneous with respect to their cel-
lular composition, with samples from these regions containing
roughly equal proportions of glutamatergic neurons (meansubcortex
= 25.1%; meanbrainstem = 25.5%), GABAergic neurons (meansubcortex
= 20.2%; meanbrainstem = 23.0%), and oligodendrocytes
(meansubcortex = 18.5%; meanbrainstem = 25.5%). We further subdi-
vided the cortical and subcortical samples into “region subclasses”
based on neuroanatomical groups (table S1), within which variation
in cellular composition was more limited (Fig. 1E). For instance, in
the subcortex, medium spiny neurons (MSNs) comprised around
half of the cells in the basal ganglia [nucleus accumbens (NAc)
mean = 44.7%; caudate nucleus (CN) mean = 60.0% MSNs],
while the thalamus was enriched for GABAergic neurons [lateral
geniculate nucleus (LGN) mean = 55.7%; mediodorsal thalamic
nucleus (mdTN) mean = 43.8%; ventrolateral thalamic nucleus
(vlTN) mean = 28.6%].

Our broad survey also captured two rarer, but important, cell
classes: dopaminergic and serotonergic neurons. These two
classes of neurons collectively represented less than 0.3% of all pro-
filed cells (dopaminergic = 0.14%; serotonergic = 0.12% of all cells)
and 0.5% of all neurons (dopaminergic = 0.19%; serotonergic =
0.17% of all neurons), suggesting that targeted approaches that
enrich for these cells [e.g., (22, 23)] are necessary to identify tran-
scriptional variation among subtypes. Dopaminergic neurons,
which are found primarily in the substantia nigra pars compacta
at low frequency [1.1% of cells sampled in the midbrain (MB)
versus mean 0.1% in other sampled regions], are involved in a
range of important processes, including voluntary movement, rein-
forcement learning, and addiction, and their loss is a neuropatho-
logical hallmark of Parkinson’s disease (24). We found that
serotonergic neurons were most abundant in the brainstem (mean
0.35% in the four brainstem regions versus mean 0.09% in other
sampled regions), where they play a major role in sleep, mood,
and appetite, and are key targets of pharmacological therapies for
major depressive disorder in humans (25).
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Fig. 1. Experimental setup and summary of the Macaque Brain Atlas snRNA-seq dataset. (A) Schematic of biopsied brain regions for sci-RNA-seq3 experiment. A full
list of sampled regions is provided in table S1. arc, arcuate sulcus; cgs, cingulate sulcus; cs, central sulcus; ecal, external calcarine sulcus; iarc, inferior arcuate sulcus; ic,
internal capsule; ips, intraparietal sulcus; ls, lateral sulcus; lv, lateral ventricle; p, principal sulcus; rf, rhinal fissure; sarc, superior arcuate sulcus. (B) UMAP visualization of all
snRNA-seq profiled cells colored by cell type [with color code shown in (C)]. (C) Barplots showing the log2 -transformed cell counts (left), regional specificity score
(middle), and regional composition [right, with color code shown in (E)] of each cell type. (D) UMAP visualization of all snRNA-seq cells colored by cell type [with
color code shown in (E)]. (E) Barplots showing the cell type composition [left, with color code shown in (C)], log2-transformed ratio of glutamatergic neurons and GA-
BAergic neurons (middle), and log2-transformed ratio of neurons and glial cells (right) of each region. Regions are organized by the regional subclass to which
they belong.
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Regional variation in cell subtype composition
To characterize heterogeneity within cell classes, we partitioned the
dataset and repeated preprocessing and clustering separately for
each of the 17 cell classes. Collectively, we identified 112 distinct
clusters (fig. S8 and table S7), using a coarser clustering criterion,
and 397 distinct clusters (table S8) using a more fine-grained crite-
rion, which captured neuronal and non-neuronal diversity across
the primate brain (Fig. 2A). We refer to clusters at the coarser
level as “cell subtypes” and clusters at the finer-grained level as
“cell subclusters.”We identified extensive heterogeneity in glutama-
tergic (39 subtypes) and GABAergic (20 subtypes) neurons primar-
ily found in the cortex and some regions of the subcortex [e.g.,
hippocampus (HIP) and thalamus], while neurons derived from
other noncortical brain regions (e.g., cerebellum and striatum)
were transcriptionally distinct and relatively homogeneous within
those regions (Fig. 2A). This is due in part to the large number of
specialized neurons present in some of these regions, including
granule and Purkinje cells in the cerebellum, and medium spiny
neurons in the basal ganglia (table S7).

Our systematic approach also allowed us to characterize and
compare the regional cellular distribution of non-neuronal sub-
types, including those of glia, which have not often been the focus
on most single-cell atlases to date (Fig. 2A and table S9). Overall, we
identified six astrocyte, two microglial, seven oligodendrocyte, and
six vascular cell subtypes, the latter including endothelial cells,
smooth muscle cells, pericytes, and both perivascular and meninge-
al fibroblasts (fig. S8 and table S7) (26). We compared cell subtypes
to published datasets using a non-negative least squares (NNLS) ap-
proach (19) and found broad correspondence with subtypes ob-
served in human cortical (14), human brain vascular (26), and
macaque hippocampal atlases (fig. S10, A to E) (27).

To identify cell subtypes or subclusters that were specific or
biased toward a single region or set of regions, we calculated a
measure of “regional specificity” using the Jensen-Shannon diver-
gence statistic (Materials and Methods) (28, 29). Overall, glial sub-
types were more evenly distributed across all regions compared to
neuronal subtypes (Fig. 2A). This is reflected in lower Jensen-
Shannon specificity scores for glial subtypes (mean = 0.20;
median = 0.15; range = [0.04,0.81]) compared to cortical neurons
(mean = 0.31; median = 0.18; range = [0.08,0.89]). A number of
cell subtypes, both neuronal and non-neuronal, were highly
region specific. For instance, oligodendrocyte subtype 8, the rarest
oligodendrocyte subtype (N = 3439 cells; 1.5% of oligodendrocytes)
overwhelmingly derived from the highly myelinated corpus callo-
sum (CC; 93.0% of these cells; Fig. 2A and table S9). Among cortical
neurons, GABAergic interneuron subtypes generally exhibited a
lower median regional specificities than to glutamatergic neuron
subtypes, although there were a number of interneuron subtypes
specific to the thalamus (cluster 6) or brainstem (clusters 3 and
16), discussed below.

Given that the regional specificity of excitatory neuronal sub-
types has been explored in depth in other studies [e.g., (30, 31)],
we focus here instead on populations that are vital for neuronal
signal transduction but for which cellular diversity has not previ-
ously been explored across the macaque brain. Specifically, we con-
centrated on the regional diversity of interneurons, because they are
important components of long-range circuitry and have been char-
acterized in a few regions across mice, monkeys, and humans [e.g.,
(12, 14, 15, 32)], allowing us to both benchmark our atlas and extend

current knowledge to understudied regions. We also examine re-
gional distribution among astrocytes, which are crucial for main-
taining neuronal homeostasis (33) and are implicated in
neurological disorders (34) but have been relatively understudied
at the single-cell level.

We pursued three main approaches to dissect the regional het-
erogeneity within interneuron and astrocyte subtypes, discussed in
further detail below: (i) quantification of cell subtype composition
to identify nuanced differences in detailed regions within the cortex;
(ii) identification of regionally specific gene expression programs by
analyzing region specific subtypes of interneurons; and (iii) in the
case of minimal region specific subtypes, leveraging a recently de-
veloped statistic to identify region-specific gene expression patterns
in astrocyte subtypes in a cell subtype–agnostic fashion.

Within specific regions of the cortex, cell subtype composition
differences become more subtle and require focused quantification.
As a first approach, for every sufficiently abundant interneuron and
astrocyte subtype in the cortex (>100 cells), we calculated the log2-
transformed ratio of cell subtype composition in a region, compared
to the average composition of that subtype across all cortical regions
(Fig. 2B). Within the five most abundant interneuron subtypes, we
not only note general balance across all cortical regions but also
observe a relative enrichment of cluster 2 (PVALB+) in the occipital
lobe [primary visual cortex (V1)] with depletion in regions within
the temporal lobe and depletion of cluster 5 (ADARB/PAX6+) in
V1. In the superior temporal sulcus (STS) and middle temporal
visual area (MT), there is a strong depletion of astrocyte subtype
3 (LUZP2/GPC5+) but an enrichment of subtype 6
(KCNIP4/RBFOX1+).

Interneurons are the primary drivers of inhibitory control
through the release of GABA (γ-aminobutyric acid) and thus
strongly affect neural circuitry. Inappropriate development of GA-
BAergic interneurons and subsequent loss of inhibitory regulation
contribute to disorders of neurodevelopment, including epilepsy
and autism (35, 36). Despite their importance, the molecular iden-
tities and distribution of interneuron subtypes across the adult
primate brain remain relatively unknown outside of a few regions
(15, 32, 37). Our snRNA-seq sample captured 371,548 GABAergic
interneurons corresponding to 20 subtypes. As a second approach,
we focused on gene markers of region-specific interneuron sub-
types. Eleven interneuronal subtypes were primarily found in the
cortex and could be assigned to four primary interneuron groups
that are conserved between mouse and human brains (32),
marked by SST, PVALB, VIP, and LAMP5 expression (fig. S11).
Compared to the cortex, the brainstem and thalamus had a
unique distribution of interneuron subtypes (Fig. 2C). Thalamic in-
terneurons, which use feed-forward inhibition to relay and tune
visual inputs to thalamocortical neurons, expressed high levels of
NTNG1 and RNF220 (Fig. 2D), which is indicative of long-range
interneurons in the first-order relay nuclei of the thalamus (38).
Sampling across the striatum, which is a critical part of the
reward pathway and the largest part of the basal ganglia, a recent
single-cell study identified a molecularly unique primate interneu-
ron (32), which was most similar to our GABAergic cluster 18 and
represented 15% of interneurons in the CN (Fig. 2A).

Astrocytes, the second most abundant non-neuronal cell type in
our dataset, are multifaceted support cells of the brain that perform
a variety of tasks related to neuronal homeostasis. These tasks can
vary across brain regions (33), and astrocyte dysfunction has been
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Fig. 2. Cell subtype distribution and variation across the brain. (A) Barplots showing the region specificity score (i.e., Jensen-Shannon divergence statistic) and com-
position for cell subtypes (with color code shown in Fig. 1E). (B) Heatmap showing scaled log2 ratios of GABAergic neuron and astrocyte subtype compositions within
cortical region, compared to the average across all regions. Cell subtypes with at least 100 cells profiled are shown in the order of abundance (x axis, left to right) in the
cortical regions organized by region subclasses (y axis). The color and direction of each pie correspond to relative enrichment (blue, clockwise) and depletion (red,
anticlockwise) of a cell subtype in a region. Log2 ratios were capped at positive and negative 2 before scaling. (C) UMAP visualizations of GABAergic neurons colored
by cell subtype (left) and regional subclass (right). (D) UMAP visualizations of GABAergic neurons colored by cell subtype marker gene expression. (E) UMAP visualization
of astrocytes colored by the region with the highest lochNESS, indicating enrichment of a region subclass in the cell’s transcriptional vicinity. LochNESS distribution in a
few example regions (occipital lobe, basal ganglia, brainstem, thalamus, and frontal lobe) is highlighted in separate panels as examples. (F) UMAP visualizations of
astrocytes colored by lochNESS-derived region-related marker genes.
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linked to neurological diseases, including Alzheimer’s disease (39).
Given these regional differences, we examined whether astrocyte
subtypes exhibited regional biases in macaque, similar to what has
been observed in the mouse brain (40). However, while astrocyte
subtypes were widely distributed across multiple regions, the cell
clusters did not correspond neatly to regions of origin, making
claims about inter-region differences in cell composition difficult
to systematically analyze across the many regions profiled. To
address this complexity, as a third approach, we adapted our recent-
ly developed statistic, lochNESS (41), to quantitatively measure re-
gional enrichment in each cell’s “neighborhood” of
transcriptionally similar cells. Briefly, for each cell, we tally the
number of cells from each brain region in its neighborhood and cal-
culate a focal regional enrichment score (fig. S12A and Materials
and Methods). We illustrate the utility of this approach by calculat-
ing the lochNESS score on astrocytes at the level of brain region sub-
classes. Each cell had 11 lochNESS scores calculated, one for each
region subclass, with each such score quantifying the enrichment
of the given region subclass in a cell’s transcriptional vicinity. We
then identified the most enriched region subclass in a cell’s neigh-
borhood and examined the regional heterogeneity agnostic to the
cluster-assigned subtype labels (Fig. 2E). We also extended loch-
NESS to identify genes whose expression can be predicted by loch-
NESS scores for given regions. We modeled gene expression as a
function of the lochNESS scores of each region in each cell using
generalized linear regression (Materials and Methods and table
S10). The resulting set of genes with significant positive associations
with a region’s lochNESS score have higher expression in, and are
putatively markers for, cell subtypes in that region.

Using this approach, we identified markers for astrocytes in spe-
cific regions (e.g.,TCAF2 and FRK in the occipital lobe) and in com-
binations of regions (e.g., PGD in the brainstem, basal ganglia, and
thalamus), which we would not have identified if we focused solely
on discrete, computationally defined clusters (Fig. 2F). This strategy
thus facilitates the identification of more complex region-specific
gene expression patterns. For example, EMID1, which is a marker
for a subpopulation of astrocyte-like NG2 cells (42), is more highly
expressed in astrocytes in the cortex but not in the thalamus, brain-
stem, or cerebellum. In contrast, ADAP2, which is involved in pro-
tection from RNAvirus infections (43), is highly specific to a subset
of astrocytes found in the thalamus (Fig. 2F). LochNESS can thus
provide a more nuanced approach to identifying regionally biased
cell subtypes and gene expression than conventional clustering.
While we focused on astrocytes in this example, lochNESS could
be iteratively applied to regions within a subclass in each cell
class, e.g., for all glutamatergic neurons across all cortical regions
or oligodendrocytes across all subcortical regions (fig. S12, B to D).

Joint analysis of single-nucleus transcriptomic and
epigenomic data
To complement our transcriptomic dataset and identify key regula-
tory genomic regions in brain cells, we applied three-level single-cell
combinatorial indexing ATAC-seq (sci-ATAC-seq3) (44, 45) to
profile single-nucleus assay for transposase-accessible chromatin
(ATAC) with sequencing (snATAC-seq) epigenomes from nearly
all of the brain regions represented in our snRNA-seq dataset. To
maximize comparability among datasets, we used 110 of the same
age-, sex-, and hemisphere-matched tissue samples (representing
the same three animals) profiled in our snRNA-seq dataset. To

ensure that the snRNA-seq and snATAC-seq datasets captured
the same heterogeneous populations of cells, we homogenized
tissue samples on dry ice before separately preparing separate
nuclei isolations for each library type (Materials and Methods). To-
gether, the snATAC-seq samples represented 28 of the 30 regions (n
= 3 animals; MB and MT snATAC-seq data were not generated).
After QC (Materials and Methods and fig. S13), the total number
of nuclei profiled was 1,587,880 and ranged from 5100 [in the
closed medulla (MdC)] to 114,410 [in the inferior temporal gyrus
(IT)] nuclei per region (median = 63,739 nuclei per region). We
called peaks on a per-sample basis and combined them across all
samples based on genomic overlap, resulting in (after filtering) a
combined set of 1,192,873 candidate cis-regulatory elements
(cCREs) spanning 24.4% (725 Mb) of the genome.

We first applied uniform manifold approximation and projec-
tion (UMAP) dimensionality reduction and Leiden clustering to
the batch-corrected epigenomic data (Fig. 3A) and identified 42
clusters which, based on promoter accessibility, could be assigned
to most major cell classes found across the brain (Fig. 3B).
However, given that unsupervised approaches to cell type identifi-
cation are consistently more sensitive using single-cell RNA-seq or
snRNA-seq data (46), we drew from our transcriptionally defined
cell annotations to assign cell labels to our snATAC-seq nuclei. To
integrate the datasets, we used the graph-linked unified embedding
(GLUE) approach (47) and generated a unified transcriptomic and
epigenomic embedding of 4,171,847 nuclei (Fig. 3, C and D). Sub-
sequent cell type predictions based on our multimodal integration
assigned the majority of snATAC-seq nuclei to a cell class (73.7%
with confidence ≥ 0.95; fig. S14) and captured all of the major
cell classes (Fig. 3D) with the exception of serotonergic and dopa-
minergic neurons, which are relatively rare and fairly specific to the
MB (which as noted above was not sampled in our snATAC-seq
data). The regional distribution of cell classes captured from
snATAC-seq and snRNA-seq data were highly concordant, both
within regions (Fig. 3E) and overall (Fig. 3F), which demonstrates
that our homogenization and nuclei isolation protocols captured
the same heterogeneous populations of cells in the same regions
across both modalities.

The gene regulatory landscape of the rhesus
macaque brain
We leveraged the snRNA-based cell class annotations (Fig. 3G) to
explore heterogeneity in cell type–specific gene regulation across the
brain. To do so, we partitioned all unique snATAC-seq reads by pre-
dicted cell class (Fig. 3G) and then called peaks separately for each
partition using a similar peak calling approach to that used for the
overall dataset, thereby generating an inventory of putative cCREs
derived from each cell class in isolation (Materials and Methods).
Across 11 cell classes with snATAC-seq–assigned nuclei, we identi-
fied an average of 210,572 peaks per cell class, ranging from 99,323
in microglia to 425,738 in cortical GABAergic neurons (Fig. 4A).
On average, for any given cell class, these peaks covered 7.7% of
the genome, and 28.8% were found >2 kb from the nearest gene
or promoter (Fig. 4A).

Transcription factor regulatory networks
Multimodal integration of cell-specific snATAC-seq and snRNA-
seq data allowed us to examine the cis- and trans-regulatory links
between chromatin accessibility and gene expression within
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Fig. 3. Generation of the Macaque Brain Atlas sci-ATAC-seq dataset and identification of cell classes. (A) UMAP visualization of all snATAC-seq cells colored by brain
region [with color code shown in (C)]. (B) UMAP visualizations of promoter accessibility scores of cell markers (GAD2: GABAergic neurons, ENTPD1: microglia, SLC1A2:
astrocytes, ATP10A: vascular cells) reveal high specificity. (C) Barplots showing nuclei counts by brain region of the snRNA-seq, snATAC-seq, and integrated datasets. (D)
UMAP visualizations of integrated multimodal data, with cell classes colored separately for (left) snRNA-seq and (right) snATAC-seq nuclei [with color code shown in (F)].
(E) Spearman’s rank correlation coefficients showing the correlation between cell class proportions in the snRNA-seq and snATAC-seq datasets within each region (rep-
resenting data generated from the same homogenized sample). (F) Scatterplot showing the correlation between cell class proportions in the overall snRNA-seq and
snATAC-seq datasets (combined across brain regions). (G) Integration-derived cell class annotations visualized over the same snATAC-seq UMAP visualization shown in (A)
[with color code shown in (F)].
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individual cell types. We first examined putative trans-regulatory
factors within cell classes and subtypes. Transcription factors
(TFs) are key trans-regulatory proteins that control cell differentia-
tion and function during neurodevelopment (48–51) and have been
implicated in myriad neurodegenerative diseases (52–54). The ex-
tremely high cell type specificity of some nuclear TFs have also
made them useful targets for identifying and enriching rarer cell
types before single-cell sequencing (55–57).

To identify candidate trans-acting regulatory networks in each
cell class, we carried out TF binding motif enrichment analysis on
each set of cell class–specific peaks, defined as the subset of a cell
class’s cCREs that did not overlap with any peaks called in other
cell classes (Materials andMethods and Fig. 4A). Cell-class–specific
cCREs were highly enriched for many TF binding motifs that are
likely involved in cell-specific gene regulation (Fig. 4B and table
S11), including many motifs previously implicated (Fig. 4C). For
instance, microglial cCREs contained 6.6-fold more binding sites

Fig. 4. Enrichment of TF binding site motifs in candidate regulatory elements. (A) Barplots showing summary statistics for peak sets called separately on reads
derived from cells assigned to each of 11 cell classes. (B) Heatmap showing enrichment (log2 OR) of TF binding motifs among cell classes. The top five most-enriched
nonredundant TF motifs (all Padj < 0.05) are shown per cell class, ordered from left to right by increasing Padj. Log2 OR color ranges are capped at ±1.5. (C) Position weight
matrices of themost-enriched TFmotifs for six example cell classes. ORs are shown in parentheses. (D) Scatterplots showing correlation between snATAC-seq accessibility
of TF binding motifs and snRNA-seq gene expression of corresponding TF genes within cell classes in regional classes for four example TFs.
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of the nuclear TF SPI1 (also known as PU.1) than expected by
chance (Padj = 1.22 × 10−284; Fig. 4, B and C). In addition to such
canonical examples, we identified numerous motifs that distinguish
relatively similar cell classes. For instance, the TF binding motif for
NFE2, from the nuclear respiratory factor (NRF) TF family, was
most enriched [odds ratio (OR) > 2] in cCREs in both medium
spiny neurons (OR = 3.07, Padj = 1.77 × 10−87) and basket cells
(OR = 2.34, Padj = 8.76 × 10−7), while the binding motif for
NEUROD1 was most enriched (OR > 2) in cCREs of basket cells
(OR = 2.04, Padj = 3.53 × 10−29), where this TF is necessary for
basket cell terminal differentiation and, consequently, axon
growth and inhibitory circuit formation (58).

We also characterized TF binding motif enrichment at the cell
subtype level. To do this, we extended our multimodal integration
and label-transferring approach to each cell class independently by
tabulating the reads per-cell falling within cell class–specific cCREs
described above for all cells of a given cell class (Fig. 3D). We then
integrated the data with corresponding snRNA-seq data of the same
cell class using GLUE (Materials and Methods). The resulting inte-
grated embeddings for each cell class were then used as the basis for
predicting cell subtypes, which we carried out on all snATAC-seq
cells within each class (fig. S15).

Since cell subtypes are preselected to already share broadly
similar chromatin accessibility profiles, identifying peaks that are
specific to a single subtype—similar to our approach at the cell
class level—was not feasible and left most cell subtypes with no
or very few unique peaks to analyze. As an alternative strategy, we
carried out differential accessibility analyses among cell subtypes to
identify peaks that were predictive of each individual cell subtype
within a given cell class (Materials and Methods). We then identi-
fied TF binding motifs enriched in highly differentially accessible
regions within cell subtypes (table S12). For example, we observed
numerous TF binding motifs (N = 433, Padj < 0.05) that were en-
riched within highly accessible peaks in Purkinje cells, a GABAergic
neuron type of the cerebellum that is implicated in autism spectrum
disorders (ASDs). In our snRNA-seq dataset, of all tested diseases
(59), genes associated with autism (DOID:12849) were overrepre-
sented (Fisher’s exact test, OR = 10.2, Padj = 8.52 × 10−16) among
the top 100 Purkinje cell marker genes, including RORA [fold
change (FC) = 331.9], AUTS2 (FC = 43.1), and SHANK2 (FC =
13.8) (table S13). Correspondingly, we found that TF motifs en-
riched in differentially accessible peaks included RORA, four
members of the early growth response (EGR) family (EGR1 to
EGR4), and CTCF (EGR1, EGR3, and CTCF were among the top
five TF motifs ranked by OR; RORA ranked 182nd). RORA is a reg-
ulator of circadian rhythm that exhibits decreased expression in
ASD brains and may play a role in ASD pathogenesis (60, 61).
EGR family TFs have been implicated in the disruption of
human-specific developmental programs in autism (62). CTCF is
an insulator protein that regulates chromatin structure and may
play a critical role in maintaining dendrite structure in Purkinje
cells (63) and CTCF is also a risk gene for ASD (64).

Given that families of TFs have similar binding motifs, it is often
difficult to identify the specific TF in a given family that is respon-
sible for enrichment in cell type–specific cCREs. To identify the
most likely TF, we therefore used our recently developed approach
(45, 65) that uses the computationally paired snRNA-seq and
snATAC-seq data. Briefly, this approach relies on the assumption
that TFs will be highly expressed in cell types where they play a

key role, while their associated motif should be enriched (or deplet-
ed) in that cell’s cCREs, indicating TF activation (or repression).
Overall, we compared the accessibility of 369 TF binding motifs
and their corresponding gene’s expression across the cell classes
in four region subclasses, with 189 TFs showing positive Pearson’s
correlation between gene expression and accessibility of the cognate
motif and 180 showing negative correlation (fig. S16A and table
S14). Among the TFs with largest positive or negative Pearson’s cor-
relation values were strong cell class–specific activators and repres-
sors (Fig. 4D and fig. S16B). For instance, SPI1, which has been
identified as a candidate gene for Alzheimer’s disease via various
functional genetics approaches (66), shows a strong activating
effect with high expression of the SPI1 gene and high accessibility
for the SPI1 binding motif in microglia. In contrast, NFATC2 has a
repressing effect in microglia and vascular cells, as shown by high
expression of the NFATC2 gene associated with lower NFATC2
motif binding in those cell types. We also found evidence for a
clear distinction between neurons and non-neuronal cells at two
TFs, with ELF1 functioning as a non-neuronal specific activator
and NEUROD2 as a neuron-specific activator. In addition, we
note that FLI1, an activator in vascular and microglia cell types,
and ELF1 have motif sequences similar to SPI1 (fig. S16C), but
their activating effects affect a broader set of cell types.

The cis-regulatory landscape of brain cell variation
We next sought to characterize cis-regulatory interactions between
cCREs and proximate genes in the rhesus macaque brain. We used
two complementary analyses to scan for interactions using our in-
tegrated multimodal dataset. First, we used the regulatory inference
framework of GLUE (47), which leverages the unified feature em-
bedding (i.e., joint integration of snRNA-seq genes and snATAC-
seq peaks in a common data space) generated during GLUE integra-
tion to assess similarity between peaks and genes. Putative regula-
tory interactions are defined as a high cosine similarity between
peak and gene feature embeddings in the unified data space, with
statistical significance assessed by permutation (47). Second, we
used a metacell-based approach to aggregate snRNA-seq transcrip-
tomes and snATAC-seq epigenomes into multimodal metacells
based on k-means clustering of the unified cell embeddings and
then used logistic regression to model the relationship between
gene expression and chromatin accessibility within a given metacell
(67). In contrast to the GLUE regulatory score, the logistic regres-
sion analysis enabled us to differentiate between positive and nega-
tive regulatory interactions between peaks and genes. We
considered peak-gene pairs to be putatively regulatory if Padj <
0.05 for both analyses (Fig. 5A and fig. S17). For each cell class,
we also scanned for differentially accessible peaks using both a reg-
ularized logistic regression and a t test, testing accessibility in a given
cell class against accessibility in all other cell classes. We consider
cCREs with differentially high accessibility (regularized LR coeffi-
cient > 0, log2 FC > 0, and t test Padj < 0.05; fig. S18) to be candidate
regulators of cell type–specific genes (Fig. 5A).

We focused our analysis on the 6000 most variable genes in our
snRNA-seq dataset and tested all snATAC-seq peaks that fell within
150 kb of the gene promoter (defined as TSS extended 2 kb up-
stream). In total, we tested 223,752 peak-gene pairs (151,083
unique peaks, 5765 unique genes), of which 142,324 peak-gene
pairs (63.6%) met our criteria for being considered candidate cis-
regulatory interactions (table S15). A total of 128,741 peaks
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Fig. 5. The landscape of cis-regulatory interactions in the Macaque Brain Atlas. (A) Schematic outlining criteria for identification of cCREs. Squares represent peak:
gene pairs, darker colors symbolize stronger evidence for a given measure, and solid borders represent statistically significant measures. (B) Distribution of gene-peak
GLUE regulatory scores binned according to the minimum signed distance (left: upstream, right: downstream) between peaks and gene TSSs. Distributions are shown
separately according towhether the gene:peak pair also exhibited a significant association (Padj < 0.05) based on the metacell-based logistic regression analysis. The ratio
between significant and not-significant gene-peak pairs for proximity bins according to the logistic regressionmodel is shown in the topmargin, while the distribution of
GLUE regulatory scores is shown in the right margin. (C) Candidate regulatory elements are shown in relation to, from top to bottom, (i) the strength of and direction of
inferred regulatory links connecting peaks toMBP expression (based onmetacell logistic regression analysis). The height of links represents the strength (−log10 P values)
of evidence for regulatory connections and the color symbolizes the direction of the relationship; (ii) the differential accessibility (−log2 FC) of peaks in oligodendrocytes
relative to all other cell classes; (iii) the distribution of normalized snATAC-seq reads by cell class; (iv) gene and transcript boundaries ofMBP and its known isoforms in the
rhesus macaque genome, with exons shown in blue; (v) the distribution of normalized snRNA-seq reads by cell class. Oligodendrocyte reads are shown in relation to all
other cell classes on the upper portion of the plot. On the bottomportion, the y axis is magnified ×60 and cropped to highlightmore subtle differences among cell classes.
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(85.2%) that we evaluated were cCREs for at least one gene, and
4811 genes (83.5%) that we evaluated had at least one cCRE.

Of all peak-gene pairs, 132,805 (93.3%) involved a peak that was
highly differentially accessible in at least one cell class, thereby ful-
filling our criteria for being considered candidate cis molecular in-
teractions regulating cell type–specific markers. cCREs were highly
differentially accessible in a maximum of seven cell classes, with
37% exclusive to a single cell class and 88% highly differentially ac-
cessible in one to three cell classes.

The vast majority (133,496 or 93.8%) of candidate regulatory in-
teractions were positively associated (i.e., had a positive effect size in
the metacell logistic regression)—this held true whether peaks were
upstream (13,650 of 14,575 or 93.7%), downstream (116,939 of
124,592 or 93.9%), or overlapping (2907 of 3157 or 92.1%) the
gene’s transcription start site (TSS). For peak-gene pairs where
the peak was upstream of the TSS, the GLUE regulatory scores
were highest (indicating high similarity between peak and gene
feature embeddings) when peaks were in closer proximity to the
TSS (Fig. 5B). For peaks downstream of the TSS, GLUE regulatory
scores remained high across all distances, with only a modest de-
crease farther from the TSS (Fig. 5B). This result was particularly
notable for peaks that had significant, mainly positive, associations
between accessibility and gene expression, likely reflecting (i) higher
global accessibility across the gene body resulting from higher ex-
pression of the gene (as opposed to distal regulation) and/or (ii)
methodological limitations of using a single gene-wide TSS (i.e.,
the most upstream TSS of all isoforms), thereby ignoring variation
in TSS positioning among isoforms, which likely vary in their usage
across tissues and contexts (68).

Using the cell class–specific gene expression and cCRE peak sets,
we repeated our integration, regulatory inference, and differential
accessibility workflows on each cell class individually. We tested a
mean of 72,914 peak-gene pairs (range: 45,539 to 114,200) per cell
class and identified a mean of 11,442 peak-gene pairs (range: 881 to
41,966) showing evidence of regulatory interactions (fig. S19 and
table S16).

To illustrate how these maps of putative interactions might be
useful to investigate the regulatory landscape at the level of an indi-
vidual locus, we focused on the myelin basic protein (MBP) gene
(Fig. 5C), which encodes one of the most abundant proteins in
central nervous system myelin (69, 70), has a range of splice iso-
forms (71), and is a canonical marker of oligodendrocytes. MBP
is located on chromosome 18 (positions 2,932,531 to 3,086,873)
on the rhesusmacaque (Mmul_10) genome and has eight annotated
mRNA isoforms (Ensembl). In humans, classic MBP isoform 3
(18.5 kDa) predominates in adult myelin (71).

In our global peak set (all cells), 94 peaks fell within 150 kb of the
MBP promoter and were included in our analysis. Of these peaks, 83
(88.3%) were identified as candidate regulators of MBP (crMBP),
with 38 crMBPs (45.8%) positively associated withMBP expression.
Of all crMBPs, only one was not located within the MBP gene
boundaries—it was, however, located less than 2 kb upstream
within the likely promoter region.

In accordance with the well-known status of MBP as an oligo-
dendrocyte marker, we found thatMBP was differentially expressed
in oligodendrocytes, with detected expression in 80.9% of cells and
1434-fold higher expression than all other cells averaged together.
Fine-grained inspection of normalized read distributions from oli-
godendrocyte nuclei revealed the highest densities of snRNA-seq

reads corresponding to the polyadenylation site (position
3,086,373) and snATAC-seq reads corresponding to the TSS (posi-
tion 3,046,976) of a single transcript, ENSMMUT00000015870, in-
dicating that it is likely the dominant MBP isoform expressed in
adult macaque oligodendrocytes.

By examining the genomic-distance relationships between
crMBPs and the dominant MBP transcript in adult oligodendro-
cytes, we found that all 16 crMBPs that either overlapped or were
downstream of the isoform’s TSS were positively associated with
MBP expression. Among the 67 crMBPs that were located upstream
of the TSS, 22 (32.8%) were positively associated withMBP expres-
sion, while 45 (67.2%) were negatively associated. Several of these
negatively associated crMBPs corresponded with sci-ATAC-seq3
peaks in other cell types, particularly OPCs and microglia
(Fig. 5C). However, the accessibility landscape of OPCs is overall
more similar to that of oligodendrocytes across the region upstream
of the TSS of the dominant isoform, with greater accessibility at
most peaks except for that of the promoter of the dominant
isoform (Fig. 5C). As OPCs play a critical role in myelinogenesis
by giving rise to oligodendrocytes (72), these crMBPs likely serve
as critical markers of the OPC-oligodendrocyte transition, during
which the expression of this gene, and this isoform in particular,
is massively up-regulated.

Evolutionary conservatism and divergence of candidate
regulatory elements
Human brain specialization could be driven in part by changes in
cell type composition and function following the evolutionary di-
vergence of cell type–specific regulatory elements. To evaluate evo-
lutionary divergence/conservatism, we tested whether cCREs that
were differentially accessible across cell classes (table S15) or
unique to cell classes (table S17) were associated with regions that
underwent rapid evolution in the human lineage [i.e., human accel-
erated regions (HARs) (73); human ancestor quickly evolved
regions (HAQERs) (74)] or are differentially accessible between
humans and chimpanzees in cerebral organoids (DAHC regions)
(75). We also tested whether cCREs were enriched for these evolu-
tionarily salient regions (relative to all peaks, called on the global
set) and did not detect any enrichments (table S17). We detected
an enrichment of DAHC regions among differentially accessible
cCREs (OR = Inf; Padj = 0.046) and a depletion of DAHC regions
among glutaminergic neuron-specific cCREs (OR = 0.263; Padj =
0.046) (table S17). These findings indicate that regulatory areas ex-
hibiting differential accessibility across cell types in the adult
macaque brain may also exhibit differential accessibility in the de-
veloping human versus chimpanzee brain, while cell class–specific
regions may be more conserved during primate brain development.
Neither HARs nor HAQERs were enriched among differentially ac-
cessible or cell class–specific cCREs (Padj > 0.05), which was expect-
ed given that intercell class variation in orthologous gene expression
is generally well-conserved in primates (76). We did identify six dif-
ferentially accessible or cell class–specific cCREs that overlapped
with HARs or HAQERs (table S17). There was one cCRE that was
differentially accessible inmacaquemedium spiny neurons, cerebel-
lar neurons, and vascular cells that overlapped with two HAQERs.
These cCREs are also: (i) located in the 1q21.1-2 region containing
the NBPF gene cluster that contains several human-specific seg-
mental duplications; (ii) areas of open chromatin in the developing
human brain; and/or (iii) regions showing differential chromatin
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accessibility between human and chimpanzee cerebral organoids
(74). While the presence of HAQERs in these regions suggests
that they may function differently in humans versus macaques,
the human sequences for these HAQERs do not appear to exhibit
significantly greater enhancer activity compared to nonhuman
primate sequences (74).

Enrichment of disease heritability among candidate
regulatory elements
Last, we used our cCREs to identify cell type–associated regulatory
networks that may drive polygenic disease risk. We tested for en-
richment of disease trait heritability using the linkage disequili-
brium score regression (LDSC) tool (77, 78), after lifting over
macaque cCREs to human genome coordinates (28). We tested a
total of 53 phenotypes relevant to neurological diseases, disorders,
syndromes, behaviors, or other traits (table S18) and examined en-
richment among cell class cCREs called separately in each of 11
cell classes.

Our results broadly recapitulated several known roles of cell
classes in neurological disease (Fig. 6 and table S19). For example,
sites associated with cardioembolic stroke (OR = 32.2) or ischemic
stroke (OR = 9.2) were enriched (Padj < 0.05) only in vascular cells,
which play a crucial role in forming and maintaining the blood-
brain barrier (79). We also found that Alzheimer’s disease–associ-
ated sites were enriched only in microglia—a result replicated using
loci from three independent genome-wide association studies
(GWAS) (OR range: 13.9–15.0)—consistent with the prominent
role of microglia proliferation and activation in Alzheimer ’s
disease (80).

Across all cell classes, basket cells were enriched for the greatest
number (N = 37) of GWAS phenotypes, including disorders such as
schizophrenia (OR range: 5.9 to 6.2), bipolar disorder (OR range:
5.6 to 6.2), and major depressive disorder (OR range: 5.1 to 5.3)
and, most strongly, epilepsy (OR = 9.0)—a disease that basket

cells have been connected to in animal models and some genetically
linked human forms of the disease (81).

Other notable results included the enrichment of multiple scle-
rosis-associated sites among open regions in microglia (OR = 46.6),
highlighting the outsized role of these immune cells in the etiology
of the disease and as a putative therapeutic target (82, 83). In mul-
tiple sclerosis, disease-associated microglia alter their transcription-
al profiles and may contribute to neuroinflammatory processes
underpinning this autoimmune disorder (83). We also found en-
richment of Parkinson’s disease–associated sites among open
regions in the glial OPC, oligodendrocyte, and astrocyte cell
classes (OR range: 7.0 to 8.4). In Parkinson’s disease, glial cells
may play a major role in the progressive degeneration of dopami-
nergic neurons (84), a classic hallmark of Parkinson’s disease, or in
alterations to glutamatergic neurotransmission (85).

Last, we found that heritable sites associated with attention
deficit/hyperactivity disorder (ADHD) in our analysis were en-
riched only among open regions of medium spiny neurons.
While the magnitude of the enrichment was relatively mild (OR =
2.6, Padj = 0.031), genetic variants associated with ADHD have been
historically difficult to identify, with the first risk loci only recently
reported (86). Medium spiny neurons have been linked to behavio-
ral hyperactivity and disrupted attention via activation of astrocyte-
mediated synaptogenesis (87). Our results therefore suggest that
medium spiny neurons may be a promising target for prospective
ADHD therapeutics warranting further study.

DISCUSSION
Understanding the cellular architecture of the primate brain is
crucial both for understanding the evolution of human cognition
and behavior and for identifying mechanisms underlying neurolog-
ical disorders. In service of these goals, we used snRNA-seq and
snATAC-seq to derive a molecular atlas spanning the adult rhesus

Fig. 6. Enrichment of heritable disease-relevant sites among candidate regulatory elements. The heatmap displays heritability enrichment (log2 OR) of diseases
among cell class snATAC-seq peaks for tested diseases, syndromes, and phenotypes. Only results passing a threshold of Padj < 0.05 are shown. The log2 OR color range is
capped at 3.0.
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macaque brain, comprising data from over 4 million cells profiled
from 30 brain regions. On the basis of our multimodal molecular
data, we identified 112 distinct molecular cell types or subtypes
and characterized their distribution across the macaque brain,
adding to the growing number of primate single-cell molecular
brain atlases (15, 32). The data are freely available (NeMO
archive, nemo:dat-rtmm5q2) and browsable (CELLxGENE
viewer, https://cellxgene.cziscience.com/collections/8c4bcf0d-
b4df-45c7-888c-74fb0013e9e7) and will serve as a rich resource
for the neuroscience and neurogenomics communities.

In generating a multiregion transcriptomic and epigenomic atlas
of the most widely used nonhuman primate in neuroscience, we (i)
identified all of the major brain cell classes and many cell types that
have been previously reported (Figs. 1 and 2); (ii) quantified region-
al distribution of cell types and subtypes within individuals, which
allowed us to identify compositional differences in samples collect-
ed at the same time and from the same animals (Fig. 2); (iii) iden-
tified rare and regionally specific cell types (e.g., Purkinje cells),
which may facilitate the development of molecular tools such as
cell type–specific viral vectors that, in combination with new tech-
nologies such as CellREADR (Cell access through RNA sensing by
Endogenous ADAR) (88), may enable precise targeting of cell types
based on their unique patterns of chromatin accessibility and gene
expression; (iv) characterized multiple trans- and cis-regulatory
mechanisms that differentiate cell classes and subtypes (Figs. 4, A
to D, and 5); and (v) identified numerous associations between
genetic risk for neurological disorders and the epigenomic states
of specific cell types (Fig. 6).

Notably, this single-cell atlas of the adult primate is generated
from samples collected from healthy adults. The paired nature of
the dataset, with regions sampled from the same individual
brains, avoids many of the inter-individual variables (e.g., genotype
and environment) that can affect neurological development and
function. The atlas may thus be a valuable resource for characteriz-
ing molecular features that play a role in myriad neurological disor-
ders. The relatively few unique individuals sampled also represent a
limitation of the current study—we currently know very little about
how brains of healthy individuals differ in cell composition and
function and what that confers for disease susceptibility and/or pro-
gression. Given continuing improvements in cost and throughput
of single-cell sequencing, characterizing multiregion cellular varia-
tion across many healthy individuals is becoming not only a possi-
bility but also an emerging priority for the field.

To our knowledge, these data represent the largest and most
comprehensive multimodal molecular atlas in any nonhuman
primate to date and provide a resource for exploring how the het-
erogeneous molecular and cellular composition of the brain gives
rise to the behavioral complexity of primates including humans.
We anticipate that these data will also provide a critical and
much-needed molecular and neurobiological map of complex
human-relevant social behavior and disease, as well as an extensive
substrate for comparative analyses across animal brains.

MATERIALS AND METHODS
Study population and sample collection
All animals sampled in this study are rhesus macaques (M. mulatta)
from the semi-free-ranging colony on the island of Cayo Santiago,
Puerto Rico. Maintained by the Caribbean Primate Research Center

(CPRC) within the University of Puerto Rico, the Cayo Santiago
macaque colony has been largely continuously studied since its
founding in 1938 (89). All present-day macaques are descended
from an initial founder population of 409 animals and have since
maintained an outbred population structure despite generations
of isolation (90). Apart from being provisioned with commercial
feed and occasionally subject to capture-and-release sampling, the
macaques otherwise live in naturalistic conditions, subject to
minimal intervention and manipulation, as approved by Institu-
tional Animal Care and Use Committee. The study used animals
that needed to be removed from Cayo Santiago (91) and were im-
mediately euthanized. Standardized tissue collection and sample ar-
chiving were coordinated by the Cayo Biobank Research Unit
(CBRU), which provided the brain samples used in this study
(92, 93).

Procedures for necropsy, brain removal, and dissection followed
those previously described for this population (93) and are briefly
outlined here. Following veterinary euthanasia, brains were per-
fused with sterile saline, removed from the cranium, and hemisected
into left and right hemispheres using a long single-edge razor blade.
After sectioning off the cerebellum/brainstem from each hemi-
sphere, the cerebral hemispheres were placed on custommolds (de-
signed either for left or right hemispheres) and coronally sectioned
into 11 roughly 5-mm-thick blocks, numbered in order rostral to
caudal. All 12 blocks (with the cerebellum/brainstem considered
block 12) were then sealed in Whirl-pak bags, flash-frozen in
liquid nitrogen vapor, and archived in ultralow −80°C freezers.
The interval between euthanasia and permanent storage of frozen
tissue averaged 51 min, with an SD of 5.8.

All procedures were performed in accordance with the National
Institutes of Health (NIH) Guide for the Care andUse of Laboratory
Animals and were approved by the Institutional Animal Care and
Use Committee at the University of Puerto Rico (protocol #338300).
Five macaques were included in this study (table S2). The vast ma-
jority of the data were derived from four 10-year-old macaques,
which are considered middle-aged adults in this population
(93, 94).

Region selection and biopsy
Frozen brain blocks were placed on a dissection tray over dry ice to
keep tissue frozen during biopsy collection. Individual blocks were
then moved from the dry ice to a tray sitting on wet ice, allowing for
tissues to be acutely warmed to the point that biopsies could be
taken from targeted structures. Biopsies were made using a
cutting spoon (Fine Science Tools Inc., catalog no. 10360-13). Dis-
sected brain regions are listed in table S1, and approximate locations
for biopsy are illustrated in Fig. 1A. For a given structure, attempts
were made to minimize inclusion of off-target surrounding tissues
(e.g., white matter underlying a targeted gray matter structure).
Below, we document themost common block numbers where struc-
tures were located. Because of interindividual differences and/or
variation in sectioning, regions of interest were sometimes identi-
fied and dissected from adjacent blocks based on neuroanatomical
landmarks. Alternate block numbers are therefore also document-
ed below.

The most anterior block sampled for this study (block 2) con-
tained gray matter for the dorsomedial (dmPFC), ventromedial
(vmPFC), dorsolateral (dlPFC), and ventrolateral prefrontal corti-
ces (vlPFC). dmPFC and vmPFC were defined as being on the
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medial side of block 2. The dmPFC biopsy was pulled from the gray
matter in the ~top half of the medial edge of the block. A space
along the medial edge was left to separate dmPFC from vmPFC.
The vmPFC biopsy was pulled from the medial ventral half of the
tissue block. Biopsies of dlPFC came from the cortical tissues sur-
rounding the dorsal lateral portion of the block that included the
superior and inferior portions of the principal sulcus. Samples
from vlPFC came from the ventral and lateral portion of the
block. As was the case on the medial side, a portion of the cortex
was left between each lateral biopsy to avoid overlap (Fig. 1A).

Block 3 (sometimes 4) contained biopsies for the anterior cingu-
late cortex (ACC), CC, and head of the CN. The biopsy for ACCwas
the gray matter sitting between the CC, which is ventral to ACC and
the cingulate sulcus (cs), which sits dorsal to the cingulate gyrus. CC
was defined as the white matter track sitting ventral to the ACC and
medial to the lateral ventricle. The CN was the gray matter sitting
ventrolateral to the lateral ventricle and surrounded on all other
sides by white matter. The CN was the only biopsy in the second
block that was scooped out of the block face to minimize inclusion
of any white matter sitting anteriorly past the CN within the
block (Fig. 1A).

Block 5 (sometimes 4 or 6) contained the amygdala (AMY), en-
torhinal cortex (EC), perirhinal cortex (PC), and NAc. The NAc is
located ventral to the caudate, internal capsule, and putamen (Pu).
Furthermore, in fresh-frozen tissue, there was a slightly darker color
to the NAc. The tissue making up the NAc was scooped out of the
block face. Similarly, the AMY was identified as ventral to the Pu,
medial to the ventral portion of the claustrum, and dorsal to the EC.
The AMY was also scooped out to minimize the inadvertent collec-
tion of neurons within the hippocampus (HIP). Last, the EC and PC
were collected, the delineation between the two was the rhinal
fissure (Fig. 1A).

Blocks 5 and 6 (sometimes 4 or 7) contained tissue that were bi-
opsied to represent cortical regions primary motor cortex (M1),
primary somatosensory cortex (S1), primary auditory cortex (A1),
superior temporal cortex (STS), and IT. Subcortical structures that
were biopsied included mdTN, vlTN, LGN, and HIP. The delinea-
tion between M1 and S1 was the central sulcus and was taken from
the approximate central third of the lateral portion of each respec-
tive gyrus. Within a case, attempts were made to biopsy from ap-
proximately the same putative mototopic and somatotopic
regions. A1 biopsies were taken from the dorsal portion of the su-
perior temporal gyrus, which is within the lateral sulcus (ls) (i.e.,
inferior operculum). The gray matter forming the STS sits ventral
to the superior temporal gyrus and dorsal to IT. IT was defined as
the gray matter forming the lateral portion of the inferior temporal
cortex. mdTN sits bilaterally on midline, within the thalamus. It is
bound by ventricles dorsally, laterally by the centrolateral thalamic
nucleus and ventrally by the centromedial thalamic nucleus. vlTN is
bound by the centrolateral thalamic nucleus medially, body of the
CN dorsally, and the reticular thalamic nucleus laterally. Biopsies
for mdTN were taken from the central and central medial portions
of the nucleus, while vlTN biopsies were taken from the central
portion of the nucleus. In both cases, this was in an effort to
avoid inclusion of other thalamic nuclei. The LGN is a six-layered
structure that is easily observed on the coronal face of fresh-frozen
slabs. When observed, the biopsy was scooped out. Like the LGN,
the HIP was defined by its classic cytoarchitectonic features within

the medial temporal lobe. For biopsies, efforts were made to not
include EC, which sits ventral and ventromedial to HIP (Fig. 1A).

Block 7 (sometimes 6 or 8) contained tissues representing the
superior posterior parietal (SPP), inferior posterior parietal (IPP),
and the middle temporal visual area (MT). SPP biopsies were
from the gray matter of the superior lobule. The intraparietal
sulcus sits between SPP and IPP. Therefore, IPP biopsies were
taken from the gray matter of the second, more lateral lobule.
Last, area MT was defined by the gray matter of the insular
cortex, bound on its medial edge by white matter of the extreme ex-
ternal capsule and laterally by the superior and inferior operculum
divided by the STS (Fig. 1A) (95, 96).

The final cerebral block, block 11, contained the visual cortex.
Biopsies from V1 were taken from the dorsolateral surface gray
matter above the external calcarine sulcus (Fig. 1A).

The hemisected cerebellum/brainstem block was dissected as
follows. First, the cerebellum was dissected off and the cerebellar
vermis (CV) was separated from the lateral cerebellar cortex
(lCb). Next, the remaining brainstem was dissected such that the
MB block was separated by making a cut from just behind the infe-
rior colliculus to the top of the basilar pons. Next, the pons was sep-
arated from the medulla by making a cut from the stria medullaris
(approximate center of the fourth ventricle) to the base of the pons.
A final cut at the base of the fourth ventricle to separate the open
medulla (MdO) from the MdC (Fig. 1A).

To allow for the profiling of multiple genomic modalities from
the same representative cell populations, we pulverized all biopsies
on dry ice to homogenize and divide tissue for downstream exper-
iments. We followed the tissue pulverization procedures described
by Domcke et al. (97) to achieve a powder consistency on a sterile
aluminum foil work surface. Once sufficiently pulverized, we stirred
the sample thoroughly and then divided the sample using the folded
edge of foil as a funnel into new 1.5-ml prechilled and prelabeled
microcentrifuge tubes. Foil and tubes were set on aluminum trays
or tube racks set on dry ice to keep powdered tissue frozen through-
out this process. We divided samples into roughly a 2:1 ratio given
the expected efficiencies/yields for snRNA-seq and snATAC-seq
protocols, respectively. Pulverized tissue was stored at −80°C up
until processing for downstream library preparation procedures.

snRNA-seq data generation
To profile single-nucleus gene expression, we performed snRNA-
seq using the sci-RNA-seq3 approach (19), which is the improved
version of the original sci-RNA-seq protocol (18). For two of the
three experimental batches in our dataset, we used a protocol
closely adhering to the sci-RNA-seq3 protocol described by Cao
et al. (19). For the third batch, we used the improved protocol
(“tiny sci”) described by Martin et al. (21). Sample order was ran-
domized between the first two batches, and within the third batch,
to minimize batch effects and other technical artifacts.

For the first two batches, we slightly modified the protocol de-
scribed by Cao et al. (19, 20) for a different tissue type and smaller
input amounts. Briefly, we added 50 μl of cell lysis buffer to pulver-
ized tissue in a 1.5-ml microcentrifuge tube and then homogenized
the tissue using 5 to 10 strokes with a disposable ribonuclease
(RNase)–free plastic pestle (Fisherbrand, catalog no. 12-141-364).
We then added another 950 μl of cell lysis buffer, mixed by
pipette, and then transferred the suspension through a 70-μm cell
strainer (pluriSelect, catalog no. 43-10070-70) into a 15-ml conical
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tube containing 5 ml of ice-cold 4% paraformaldehyde. Nuclei were
fixed in 4% paraformaldehyde for 15 min with occasional mixing,
washed once in 1-ml ice-cold nuclei wash buffer, and then suspend-
ed in 200-μl nuclei wash buffer. Nuclei were counted bymixing with
1 μM YOYO-1 iodide (Thermo Fisher Scientific, catalog no. Y3601)
using a Countess II FL automated cell counter (Life Technologies),
divided into tubes in 100-μl aliquots, and then flash-frozen in liquid
nitrogen.

For nuclei fixed with paraformaldehyde, library construction
was similar to the sci-RNA-seq3 method from Cao et al. (19)
with minor modifications including the substitution of Quick
Ligase (New England Biolabs) for 10 min at 25°C for the second
index step, instead of T4 DNA ligase (NEB) for 180 min at 16°C.
For tagmentation, we used N7 adaptor-loaded Tn5 from QB3 Mac-
roLab at the University of California Berkeley in tagmentation
buffer (2× TD) as previously described in Corces et al. (98): 20
mM tris-HCl (pH 7.5), 10 mMMgCl2, and 20% (vol/vol) dimethyl-
formamide. Libraries were sequenced on a NextSeq or NovaSeq
platform (Illumina) (read 1: 34 cycles, read 2: 100 cycles, index 1:
10 cycles, index 2: 10 cycles).

For the [dithiobis (succinimidyl propionate)] (DSP)/methanol
nuclei isolations and library construction based on Martin et al.
(21), we used hypotonic lysis buffer solution B (with bovine
serum albumin) for small volume tiny sci-RNA-seq3 nuclei isola-
tion methods. For sci-RNA-seq3 library construction, we loaded
~20,000 nuclei per index 1 reverse transcriptase (RT) well in a
384 RT-well experiment with mouse and human brain added as
separate QC nuclei and nuclei from cell lines human embryonic
kidney (HEK) 293T (RRID:CVCL_0063) and NIH/3 T3
(RRID:CVCL_0594) combined as barnyard controls per RT plate.
Nuclei from all RT plates were pooled and redistributed to ligation
plates for the second index as previously published; after the addi-
tion of the second index, nuclei were again repooled for their final
distribution of 4000 nuclei per well before second strand synthesis,
protease digestion, tagmentation, and polymerase chain reaction all
on this final third index plate.

snRNA-seq preprocessing
snRNA-seq sequencing reads were processed into a gene-by-
nucleus expression matrix of UMI counts following the methods
described by Cao et al. (19). We used largely an identical pipeline
which, briefly, (i) converts base calls to fastq files with bcl2fastq/
v.2.20 (RRID:SCR_015058) (Illumina), (ii) removes adapter se-
quences using Trim Galore/v.0.6.7 (RRID:SCR_011847) (99), (iii)
aligns trimmed reads to a reference genome with STAR/v.2.7.6
(RRID:SCR_004463) (100), (iv) extracts mapped reads, (v)
removes duplicates, and (vi) generates UMI counts for exonic and
intronic regions of each gene, tabulated according to the unique
three-level barcode design in sci-RNA-seq3. We used the rhesus
macaque reference genome (Mmul_10) (101) and annotation, ob-
tained from Ensembl (version 101) (RRID:SCR_002344). We ex-
tended the 30 untranslated region annotations of genes and
transcripts by 500 bp to avoid misclassifying genic reads as inter-
genic. The remainder of our pipeline followed the procedures de-
scribed by Cao et al. (19). After generating the count matrix, we
removed all nuclei with UMI counts < 100.

For each sample, we imported gene-by-nucleus count matrices
into the AnnData/v.0.8.0 (RRID:SCR_018209) (102) framework
and then ran Scrublet/v.0.2.3 (RRID:SCR_018098) (103)

(expected_doublet_rate = 0.05) to calculate doublet scores. We
marked nuclei as doublets if they had Scrublet doublet scores >
0.20. For each sample, we additionally marked nuclei as doublets
using per-sample thresholds determined by Scrublet and adjusted
by eye as necessary to separate bimodal peaks visualized on the
Scrublet doublet score histogram (fig. S1).

To further identify potential doublet nuclei, we used an iterative
clustering strategy (104) implemented with Scanpy/v.1.9.1
(RRID:SCR_018139) (105). First, we combined all nuclei
into a single AnnData object and filtered nuclei to those with UMI
≥ 100, number of expressed genes < 2500, and a percentage
of reads mapping to the mitochondrial genome < 5%. We then
removed all non-autosomal genes, genes located on unplaced
scaffolds, and unexpressed genes. Next, we normalized the data to
the total UMI per nucleus, logarithmized the data, and subsetted the
data to the 10,000 most variable genes. For each cell, we regressed
out total UMI counts per nucleus and then mean-centered and
scaled the data. The dimensionality of the data was then reduced
by principal components analysis (PCA) (50 components). To
further reduce the dimensionality, we ran a UMAP (using
umap-learn/v.0.5.2) (RRID:SCR_018217) analysis (106) with
BBKNN/v.1.5.1 (RRID:SCR_022807) (107) to simultaneously
correct for batch differences. For the BBKNN integration, we set
neighbors_within_batch = 10 (given three batches, tantamount to
UMAP n_neighbors = 30), used the cosine distance metric, and
used the PyNNDescent/v.0.5.6 algorithm (RRID:SCR_022806)
(108). We then ran UMAP using the settings min_dist = 0, spread
= 1.0, and n_components = 10 to facilitate clustering (https://umap-
learn.readthedocs.io/en/latest/clustering.html). For data visualiza-
tion only (not clustering), we ran a similar BBKNN/UMAP pipeline
with neighbors_within_batch = 5 (for three batches, tantamount to
UMAP n_neighbors = 15), min_dist = 0.25, spread = 1.0, and
n_components = 2. To cluster the data, we exported and imported
the 10-dimensional UMAP matrix into Monocle3/v.1.2.9
(RRID:SCR_018685) (19) in R/v.4.0.2 (RRID:SCR_001905)
(109) and then implemented the Leiden-clustering workflow in
Monocle3 with a relatively high-resolution setting (resolution = 1
× 10−4). For each cluster, we then calculated the mean Scrublet
doublet score and marked all clusters with a mean Scrublet
doublet score > 0.15 as doublet clusters (fig. S1).

After identifying doublets as described above, we removed all
marked doublets and repeated the normalization, dimensionality
reduction, and clustering procedures almost exactly as described
above, with the only difference being a coarser cluster resolution
setting in Monocle3 (resolution = 1 × 10−5). We confirmed ade-
quate removal of doublet cells by observing the clean separation
of distinct cell types and the absence of clusters expressing obviously
ambiguous marker gene profiles (fig. S1).

Removal of sci-RNA-seq cell contamination
During the course of cell type identification (see the following
section), we observed the presence of two distinct clusters of cells
(fig. S2A) with expression profiles resembling embryonic progeni-
tors (markers genes, unknown cluster 1: ASPM, CENPE, CENPF,
MKI67; unknown cluster 2: COL1A1, COL1A2, FN1, VIM), an
unusual finding in adult primate brain samples. Because these
were present in relatively large proportions in some samples
(~25%)—but at low levels overall (2.2%)—and because our sci-
RNA-seq experiments included control samples of exogenous
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(i.e., non-macaque brain) origin (specifically, a fetal mouse brain
positive control and a “barnyard” sample consisting of mixed
human HEK293T and mouse NIH/3 T3 cells), we tested for the
presence of contaminating nuclei of exogenous origin. We identi-
fied and removed contaminating cells as follows.

Because the only non-macaque samples included in all experi-
ments were the control samples of either human or mouse origin,
we used BBSplit/v.38.38 (RRID:SCR_016965) (110) to assign reads
to the macaque, human, or mouse genomes. BBSplit is a competi-
tive aligner that maps to several references simultaneously, assign-
ing reads to the genomewith the best unambiguous match.We used
the following reference assemblies from Ensembl version 101:
Mmul_10 (rhesus macaque), GRCh38.p13 (human), and
GRCm38.p6 (mouse). After indexing the three references simulta-
neously using BBSplit, we aligned 10 million randomly sampled
unique (de-duplicated) reads for each sample using default settings
in BBSplit, which partitioned reads assigned to each genome into
separate fastq files. Unmapped and ambiguous reads were directed
to additional fastq files that were not used. Using a similar demul-
tiplexing workflow to the sci-RNA-seq3 preprocessing pipeline, we
tabulated reads-per-cell for each of the three genomes and calculat-
ed summary statistics.

After filtering to only cells with ≥10 unambiguously assigned
reads by BBSplit, we observed that discernible fractions of exoge-
nous reads (reads unambiguously assigned to human or mouse)
were specific to certain barcodes from the first round of sci-RNA-
seq barcoding [reverse transcription (RT)], indicating that a low
level of cross-well contamination of cells or barcoded primers
likely occurred at this stage (fig. S2C). We also observed that, after
filtering to cells passing all previous QC filters, our clustering and
annotation workflow had partitioned exogenous cells into two clus-
ters corresponding to human and mouse cells respectively, with no
discernible exogenous contamination in other annotated cell types
(fig. S2B). After removing the entirety of the two exogenous clusters
from the dataset (N = 58,443 cells), we reexamined the distribution
of exogenous read fractions across RT barcodes and confirmed that
human and mouse cells were effectively removed (fig. S2C).

Our discovery of contamination at the level of RT wells called
into question whether similar contamination occurred elsewhere
in our dataset. Any such contamination is more difficult to detect
as contaminating cells would be of macaque origin. Because con-
tamination is specific to RT barcodes, however, and because
samples were loaded with multiple RT barcodes (typically at least
6), we scanned our dataset for barcodes for which proportions of
identified cell types (see the following sections) deviated noticeably
from those of other barcodes for a given sample.

To perform these scans, we computed the Jensen-Shannon di-
vergence statistic using the “JSD” function from the philentropy
package (RRID:SCR_022805) (111) in R. We calculated the
Jensen-Shannon divergence by comparing cell class or cell
subtype proportions for a given RT barcode to mean cell class or
cell subtype proportions across all barcodes of a given sample.
Because cell class and cell subtype counts/proportions tend to be
sparser for barcodes/wells with fewer cells, leading to heightened
risks of false specificity, we focused on barcodes with both higher
cell counts (>10,000) and high specificities (cell class specificity >
0.15 and cell subtype specificity > 0.075) based on visual inspection
of both distributions (fig. S3). By these criteria, we identified two RT
barcodes that represented likely mixtures of multiple samples. For

these barcodes, we marked cells as potential contamination and, for
downstream analyses, excluded them from analyses of regional pro-
portions, specificity, and enrichment.

snRNA-seq cell type and cell subtype identification
To identify cell types, we visualized the expression of canonical
marker genes (table S3) on normalized, log-transformed gene ex-
pression data using Scanpy. Most clusters were readily assigned to
well-characterized cell types in this manner. To aid in the classifi-
cation of more nuanced cell types, we determined top marker genes
using logistic regression and t test marker gene methods imple-
mented via the “rank_genes_groups” function in Scanpy. For each
discrete cell type, we ran marker gene tests by testing gene expres-
sion in a given cell type against gene expression in all other cells in
our dataset.

On the basis of canonical markers and data-derived marker
genes, we identified 17 parent cell types (not including the two
cells of exogenous origin, see the section above), which we refer
to as cell classes. In all but two cases, our parent cell types corre-
sponded with partitions identified through our clustering using
Monocle3 (q value threshold = 0.05). In two cases, we considered
clusters assigned to the same partition to be discrete parent cell
types because they exhibited clear separation in our global analysis
while clearly expressing canonical markers of known cell types
(dopaminergic and serotonergic neurons; table S3) yet did not ef-
fectively segregate when their assigned partition (the partition also
including GABAergic neurons) was analyzed separately.

To identify pathways associated with up-regulated and/or down-
regulated genes in each cell class, we conducted pathway enrich-
ment analysis using two complementary approaches. First, we com-
puted pathways activity levels (PALs) for each cell class across
52,041 pathways from the Oncobox Pathway Databank (Onco-
boxPD; RRID:SCR_023723). We used the curated set of pathway
annotations for human genes (based on HGNC nomenclature)
downloaded from OncoboxPD (112), which we converted to
macaque ENSEMBL (version 101) gene identifiers through
biomaRt (RRID:SCR_019214). We calculated PALs using oncobox-
lib/v.1.2.3 (RRID:SCR_023722) (113), with aggregated (pseudo-
bulked) RNA profiles for each cell class within each brain region
as input. When calculating the PALs for each cell class, we use all
the remaining cell classes as “control” samples. For each cell class,
we then calculated the average PAL across all brain regions. When
summarizing these results, we focused on a set of nonredundant da-
tabases [Qiagen 1.5, Biocarta 1.2, Kyoto Encyclopedia of Genes and
Genomes (KEGG) Adjusted 1.4, PathBank 1.0, Reactome 1.3, and
NCI 1.2] and pathways with the 50 highest and 50 lowest average
PALs (table S4). Second, we tested for enriched Gene Ontology
(GO; RRID:SCR_002811) biological processes (BP), molecular
functions (MF), and cellular components (CC) using GO annota-
tions for the rhesus macaque reference genome (Mmul_10) down-
loaded from ENSEMBL (verison 101) via biomaRt
(RRID:SCR_019214). For each cell class, we used the t test statistic
from our marker gene analysis as input, after filtering out mito-
chondrial genes and genes from unplaced scaffolds. We performed
GO enrichment analysis using threshold-independent Kolmogo-
rov-Smirnov (KS) tests implemented in topGO
(RRID:SCR_014798), which corrects for the correlated graph struc-
ture of the underlying GO database (114). KS enrichment tests were
run using the “weight01” algorithm in topGO. We tested for
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enriched GO classes separately for up-regulated and down-regulat-
ed genes and separately for each cell class and GO namespace (BP,
MF, and CC).We considered GO classes to be significantly enriched
where Padj < 0.01 (table S5).

To identify cell subtypes, we partitioned the data by cell class and
reanalyzed each data partition individually. For each cell class–spe-
cific analysis, we repeated a preprocessing, dimensionality reduc-
tion, and clustering analysis that largely followed the pipeline
described above for our global analysis, with the following excep-
tions. After normalizing and log-transforming the data, we identi-
fied the 2000 most variable genes for each given cell type and subset
the data to those highly variable genes. Because we observed that
differences in total UMI among batches resulted in artifactual clus-
ters being identified downstream (even after batch correction with
BBKNN, a problem we did not observe in our global analysis), we
regressed out total UMI counts per nucleus separately for each
batch. We then combined residual values from all batches before
mean centering and scaling for PCA and UMAP analysis. For
Leiden clustering, we used the same resolution parameter (resolu-
tion = 1 × 10−5) for most cell types but, in four cases, defaulted to
partitions identified usingMonocle3 (q value threshold = 0.05) after
observing small clusters with unusually high UMI. We considered
clusters/partitions identified in this manner to be cell subtypes. To
explore cell-cell variation with even higher granularity, we per-
formed another round of clustering using a relatively fine resolution
parameter (resolution = 1 × 10−4). In all cases, this resolution pa-
rameter also maximized the modularity of the Leiden clustering al-
gorithm and was thus automatically selected by Monocle3 as the
ideal clustering resolution. We refer to clusters identified in this
manner as cell subclusters.

As with our global (all cell classes combined) analysis, for each
cell subtype, we identified topmarker genes using logistic regression
and t test marker genemethods implemented in Scanpy. In addition
we used an NNLS approach (19) to identify correlations between
cell subtypes and annotated labels in reference datasets (table S7
and fig. S10).

In addition, we scanned for gene-disease associations that were
enriched among the top 100 marker genes for each cell subtype. We
used gene-disease associations from the DISEASES database
(RRID:SCR_015664) (59) and used Fisher’s exact test to identify
overrepresented disease associations among the top 100 marker
genes for a given cell subtype, using all macaque genes in our anal-
ysis as the background (table S13).

Because of the large number of cell subclusters identified and
smaller number of cells per subcluster, we used a neighborhood-
based procedure to identify marker genes for each subcluster. For
cells of a given subcluster, we identified neighboring cells using
the batch-corrected weighted adjacency matrix determined with
BBKNN, keeping all cells with weights > 0 after excluding cells
from the same given subcluster. We then calculated marker genes
using this set of neighboring cells as the reference, using the t test
method implemented in Scanpy (table S8).

For all cell subtypes and cell subclusters, we assessed the reliabil-
ity of each annotation using a machine learning classification ap-
proach with fivefold cross-validation. For each cell class, we used
the LinearSVC function from scikit-learn/v.1.0.2
(RRID:SCR_002577) (115) to train a classifier using normalized,
log-transformed, and scaled expression data. After aggregating pre-
dictions across the five partitions, we assessed cell subtype and

subcluster “quality scores” (classification accuracy) as the frequency
of annotated cells assigned the correct label by the classifier (tables
S7 and S8 and fig. S9).

Cell composition and regional heterogeneity analysis
To assess the specificity of cell classes and/or subtypes, we calculated
the Jensen-Shannon divergence statistic using the “JSD” function
from the philentropy package (RRID:SCR_022805) (111) in
R. We calculated the Jensen-Shannon divergence by comparing,
for a given cell class or cell subtype, the cell type’s count distribution
across brain regions to the count distribution (combining all cell
types per region) of the entire dataset combined (29).

To measure regional heterogeneity within cell types, we extend-
ed our recently developed statistic, lochNESS (41), to quantitatively
measure enrichment of each region subclass or region within each
cell’s neighborhood. For each cell type, we define lochNESS of celln
for regionm as

lochNESScelln;regionm ¼
# of cells from regionm in kNNs of celln

k
=

# of cells from regionm in cell type
N

where N is the total number of cells in the cell type, and k is the
number of nearest neighbors for celln.

For each cell type, the calculation results in a cell × regionmatrix,
where each row can be separately visualized. For a summarizing vi-
sualization, each cell can be colored by the region with the largest
lochNESS. In addition, when we focus on a subset of regions (e.g.,
just the cortical regions), we calculate a normalized lochNESS that is
comparable across the regions of interest

lochNESS�celln;regionm ¼ lochNESScelln;regionm=
XM

m¼1
lochNESScelln;regionm

where M is the number of regions or region subclasses of interest.
To identify genes that are expressed with regional bias, we fit a

regression model for each gene to identify regions with significant
nonzero correlation with gene expression as implemented in
Monocle3 (19). The model for each cell type is

logðexpressionÞ ¼ β0 þ β1 � lochNESSregion1
þ β2 � lochNESSregion2 þ . . .

þ βm � lochNESSregionm
where β0 is the intercept and lochNESSregioni is a vector of lochNESS
across all cells in the cell type.

Hierarchical clustering of cells and regions
Weused Scanpy to cluster cell classes and brain regions based on the
top 50 principal components of gene expression. Because of our use
of BBKNN for batch correction in our main workflow, our PCAwas
not actually corrected for batch. To rectify this, we first used the har-
monpy/v.0.0.5 (RRID:SCR_022798) implementation of Harmony
(RRID:SCR_022206) (116) to generate a batch-corrected PCA
matrix (convergence after two generations). We then used the
Scanpy “dendrogram” function to perform hierarchical clustering
using the batch-corrected PCA embedding. To visualize uncertain-
ty, we performed 1000 bootstrap iterations in which we resampled
cells randomly with replacement and computed new dendrograms.
We then used the “DensiTree” function (117) implemented in the
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phangorn/v.2.6.3 (RRID:SCR_017302) (118) R package to visualize
trees. We performed this procedure using both cell class and brain
region as labels (fig. S6, A and B).

For brain regions, we also performed hierarchical clustering
using the cell proportion (cell class × brain region) matrix. We
used the “hclust” function in R to cluster using the “complete”
method based on Euclidean distances. To again visualize uncertain-
ty, we resampled all cells in our dataset 1000× with replacement and
then repeated calculation of cell class proportions and hierarchical
clustering. We visualized the final tree with “DensiTree” (fig. S6B).

snATAC-seq data generation
To profile single-nucleus chromatin accessibility, we performed
snATAC-seq using the sci-ATAC-seq3 approach (45), which is the
improved version of the original sci-ATAC-seq protocol (44). We
followed the protocol of Domcke et al. (97), with slight modifica-
tions. Briefly, we added 50 μl of Omni-ATAC lysis buffer to pulver-
ized tissue and homogenized the tissue with 5 to 10 strokes with a
disposable RNase-free plastic pestle (Fisherbrand, catalog no. 12-
141-364). We then added another 950 μl of Omni-ATAC lysis
buffer, mixed by pipette, incubated on ice for 3 min, and then trans-
ferred the suspension to a new 15-ml conical tube containing 5 ml
of ATAC resuspension buffer (ATAC-RSB) with 0.1% Tween 20.We
then pelleted the nuclei, removed the supernatant, and resuspended
the pellet in 1 ml of 1× Dulbecco’s phosphate buffered saline
(DPBS). We then transferred the suspension through a 70-μm cell
strainer (pluriSelect catalog no. 43-10070-70) into a 15-ml conical
tube containing 4 ml of 1× DPBS and 140 μl of 37% formaldehyde
(final concentration, 1% formaldehyde). We then incubated the
nuclei for 10 min with occasional mixing. The fixation was then
quenched with 250 μl of 2.5 M glycine, incubated for 5 min at
room temperature, and then incubated for another 15 min on ice.
We then pelleted the nuclei, removed the supernatant, and resus-
pended the pellet in 2-ml freezing buffer. Nuclei were counted by
mixing with 1 μM YOYO-1 iodide (Thermo Fisher Scientific,
catalog no. Y3601) using a Countess II FL automated cell counter
(Life Technologies), divided into tubes in 50-μl aliquots, and then
flash-frozen in liquid nitrogen.

Frozen fixed nuclei were prepared for the sci-ATAC-seq3 library
similar to Domcke et al. (45). Omni-ATAC lysis buffer [10 mM
NaCl, 3 mM MgCl2, 10 mM tris-HCl (pH 7.4), 0.1% IGEPAL
CA-630, 0.1% Tween 20, and 0.01% digitonin] was used to permea-
bilize fixed nuclei before diluting samples with ATAC-RSB [10 mM
NaCl, 3 mM MgCl2, and 10 mM tris-HCl (pH 7.4)] supplemented
with 0.1% Tween 20. Approximately 200,000 nuclei per sample were
spread across four wells for tagmentation as previously described.
Barnyard control for each set of experiments included mouse cell
line (CH12-LX; RRID:CVCL_0211) and human pancreas as a
QC tissue.

Our combined snATAC-seq dataset encompasses data prepared
using five sci-ATAC-seq3 experimental runs (i.e., library prepara-
tion/sequencing batches). Sample order was randomized between
batches to ensure balance of brain regions, sex, and hemispheres
between runs and to minimize batch effects.

snATAC-seq preprocessing
snATAC-seq sequencing reads were processed into a peak-by-
nucleus count matrix following the methods described by
Domcke et al. (45). We followed largely an identical pipeline

which, briefly, (i) converts base calls to fastq files with bcl2fastq/
v.2.20 (Illumina), (ii) removes adapter sequences using Trimmo-
matic/v.0.39 (RRID:SCR_011848) (119), (iii) aligns trimmed reads
to a reference genome with bowtie2/v.2.4.1 (RRID:SCR_016368)
(120), (iv) calculates nonduplicate fragment endpoints for each
cell, (v) calls peaks using MACS2/v.2.2.7.1 (RRID:SCR_013291)
(121, 122) and merges peaks across samples to create a merged
BED file, (vi) tabulates reads from merged peaks and annotated
TSSs (±1 Kb around each TSS) for QC, (vii) separates cell barcodes
from background barcodes by fitting a mixture of two negative bi-
nomials (noise versus signal), and (viii) assembles a sparse matrix
tabulating reads per cell barcode falling within the master set of
peaks and within gene bodies extended by 2 kb upstream. We
used the rhesus macaque reference genome (Mmul_10) (101) and
annotation, obtained from Ensembl (version 101), and merged
peaks across all samples (encompassing five library preparation
and sequencing batches) to create a global set of peaks. After binar-
izing UMI counts, we filtered the peak-by-nucleus matrix to include
only nuclei with ≥ 1000 binarized UMI, less than 100,000 binarized
UMI, and ≥ 30% fraction of reads in peaks (fig. S13).

We identified and removed doublets using a similar iterative
clustering approach to that described for our single-nucleus RNA
dataset (fig. S13). Briefly, we ran Scrublet/v.0.2.3 (103) on each
sample individually and marked doublets using both a universal
threshold (Scrublet doublet score > 0.20) and a per-sample thresh-
old determined by Scrublet and checked and adjusted (if necessary)
by eye. We then performed a similar preprocessing, dimensionality
reduction, and clustering pipeline to identify clusters with relatively
high Scrublet doublet scores (mean Scrublet doublet score > 0.15).
We lastly removed all nuclei marked as doublets based on the de-
scribed criteria before concatenating all singlet nuclei across all
samples together.

Our snATAC-seq preprocessing, dimensionality reduction, and
clustering pipeline likewise tracked closely to our snRNA-seq anal-
ysis, with minor modifications to accommodate best practices for
ATAC-seq data. Briefly, we filtered the data to remove peaks that
were not accessible in a minimum of five cells as well as peaks
that were located on non-autosomal or unplaced scaffolds in the
macaque genome. We then filtered the data to the top 100,000 var-
iable features. We performed latent semantic analysis (LSI) on the
resulting peak-by-cell matrix to reduce the dimensionality of the
data. We performed term frequency/inverse document frequency
(TF-IDF) normalization followed by singular value decomposition
(SVD) following previously described procedures (45) to reduce the
data to 50 PCA dimensions. L2 normalization was then performed
on the last 49 principal components, thereby excluding the first
principal component, which tends to capture read depth (45). TF-
IDF, SVD, and L2 normalization procedures were implemented
using scikit-learn/v.1.0.2 (RRID:SCR_002577) (115). The L2-nor-
malized PCA matrix was then reduced further and clustered using
an identical BBKNN/UMAP/Monocle3 approach to that used for
our snRNA-seq data. Doublet-derived clusters were also marked
for removal using an identical threshold (mean Scrublet doublet
score > 0.15).

After marking and removing doublets from our data, we repeat-
ed our preprocessing, dimensionality reduction, and clustering
pipeline. After observing clear separation of distinct cell classes,
we usedMUON/v.0.1.2 (RRID:SCR_022804) (123) to calculate pro-
moter accessibility scores by tabulating binarized UMI counts
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within the region 2000 bp upstream of a TSS. Because at the time of
this analysis MUON did not factor in DNA strand information, we
ran the function “count_fragments_features” separately for + and −
strand genes, using the “upstream_bp” or “downstream_bp” argu-
ments as necessary to tabulate counts in the correct upstream region
[extending from the TSS to (TSS − 2000 bp) or (TSS + 2000 bp),
respectively] (https://github.com/scverse/muon/issues/59). We
used Scanpy to normalize and visualize resulting promoter accessi-
bility scores (Fig. 3B). We provisionally classified nuclei based on
promoter accessibility scores of known marker genes.

Integration of snRNA-seq and snATAC-seq data
We used GLUE implemented in scglue/v.0.2.3 (RRID:SCR_022803)
(47) to integrate our snRNA-seq and snATAC-seq datasets. To run
scglue, we followed preprocessing procedures in Scanpy recom-
mended by the scglue authors for both our snRNA-seq and
snATAC-seq data, after filtering out doublets as described above.
For snRNA-seq data, we identified the top 2000 most variable
genes, then normalized, log-transformed, and scaled the data
using default parameters in Scanpy. We then reduced the dimen-
sionality of the data to the top 100 principal components using
PCA, based on the top 2000 variable genes and the automatic
SVD solver selected by Scanpy. For snATAC-seq data, we used
the LSI implementation in scglue to reduce the data to the top
100 principal components, with the number of power iterations
set to 15.

We then used scglue to compute a prior guidance graph and
propagated highly variable snRNA-seq features (genes) to identify
highly variable snATAC-seq features (peaks) based on the guidance
graph.We then built and trained the GLUE integration model using
the PCA and LSI embeddings, respectively, as the first encoding
transformation, modeling raw counts of both snRNA-seq and
snATAC-seq data using the negative binomial model, using the
batch correction option to correct for sequencing batches, and
using the previously computed prior guidance graph as input. As
all nuclei from this study were included (totaling over 4 million
nuclei), this analysis was particularly computationally demanding.
We performed this analysis on a machine with 1.5 TB RAM, accel-
erated by 4 Tesla V100 (NVIDIA) GPUs.

After training a GLUE model, we validated effective integration
by calculating integration consistency scores using scglue (fig.
S14A). We then calculated integrated cell and feature embeddings
for both snRNA-seq and snATAC-seq data using scglue. After pro-
jecting all cells to a unified embedding, we performed UMAP di-
mensionality reduction using the same procedures as described
previously, with one exception. Because the unified GLUE embed-
ding was already batch-corrected, we computed the neighborhood
graph using the Scanpy “neighbors” function rather than BBKNN,
with n_neighbors = 15.

To transfer cell class labels from our snRNA-seq data to our
snATAC-seq data, we used the “transfer_labels” function in
scglue, which computes shared nearest neighbors between reference
(snRNA-seq) and query (snATAC-seq) nuclei, weighted by the
Jaccard index. Jaccard indices are then normalized per query
nucleus to form a mapping matrix, which is then multiplied by
one-hot-encoded reference labels. The reference label with the
highest score is then assigned as the predicted cell type, with the
highest score retained as the confidence score. For label transfer,
because a subset of our snRNA-seq data was derived from

samples that were unprofiled in our snATAC-seq data, we limited
our reference RNA-seq dataset to only those nuclei deriving from
samples profiled in both snRNA-seq and snATAC-seq experiments.
We then retained 100,000 nuclei from withheld (unmatched)
snRNA-seq samples as a query dataset to evaluate label transfer ac-
curacy. For snATAC-seq label transfer, we used all snATAC-seq
nuclei as a query dataset. We used previously assigned parent cell
types for our snRNA-seq dataset as reference labels. For our
snATAC-seq query nuclei, we retained all predicted cell class
labels with a label transfer confidence score ≥ 0.95. At this thresh-
old, the error rate in our evaluation dataset was 0.43% (fig. S14B).

Identification of cCREs
To scan for cCREs underlying differential expression among brain
cells, we used two complementary approaches. First, we used the
integrative GLUE regulatory inference approach implemented in
scglue/v.2.0.3 (47), which calculates regulatory scores based on
the cosine similarities between multi-omics data features in an in-
tegrated space. Second, we used a metacell approach to construct
multi-omic samples (determined via k-means clustering in integrat-
ed space) with aggregated (pseudobulk) gene expression and chro-
matin accessibility counts, which we then modeled using logistic
regression. Last, we calculated differentially accessible peaks using
a similar workflow to our snRNA-seq marker gene analysis.

To calculate GLUE regulatory scores, we performed a second in-
tegration of our snRNA-seq and snATAC-seq datasets, following an
identical pipeline except including the top 6000 most variable genes
(rather than 2000). This allowed us to identify putative gene:peak
regulatory connections and to generate an integrated feature em-
bedding for a greater number of genes and genomic regions. We
constructed a window graph between inferred promoters—which
we calculated as the region from the strand-specific TSS extended
upstream 2000 bp—and peaks using the “window_graph” function,
with the window size set to 150 kb and a distance-decaying weight,
as recommended by the scglue authors.We then used the previously
computed window graph and feature embeddings to perform the
regulatory inference analysis using the “regulatory_inference” func-
tion, with the alternative hypothesis set to “greater” to perform a
one-sided test.

To determine the directionality of putative regulatory relation-
ships, we used a second approach based on metacell identification
and logistic regression (Fig. 5A). We use the “get_metacells” func-
tion to generate multi-omic (snRNA-seq/snATAC-seq) metacells
based on k-means clustering of their integrated cell embeddings.
As our snRNA-seq dataset included 2,583,967 single-cell transcrip-
tomes, we set k (n_meta) to 10,335 to target a mean of roughly 250
RNA transcriptomes permetacell. After identifyingmetacells in this
manner, we summed (pseudobulked) gene expression per metacell.
For each gene:peak pair tested in our GLUE regulatory inference, we
then performed a logistic regression modeling accessibility of each
individual snATAC-seq cell in a given metacell (1: open, 0: closed)
as a function of log2CPM-normalized gene expression for that
snATAC-seq cell’s respective metacell. Logistic regressions were
performed in R/v.4.0.2.

We considered candidate cis-regulatory relationships to be gene:
peak pairs for which false discovery rate–adjusted P < 0.05 for both
the GLUE regulatory inference and metacell-based logistic regres-
sion tests. We classified candidate cis-regulatory relationships as
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positive or negative relationships based on the sign of their logistic
regression coefficients (β values) (fig. S17).

For all peaks, we also tested for marker peaks (peaks with differ-
entially accessibility) using logistic regression and t test marker gene
methods implemented via the “rank_genes_groups” function in
Scanpy. Similar to our snRNA-seq marker genes analysis, we ran
marker peak tests by testing chromatin accessibility in a given cell
type against accessibility in all other cells in our dataset. In addition,
to validate marker peaks, we used a second logistic regression ap-
proach implemented via the “FindMarkers” function in Seurat/
v.4.1.1 (RRID:SCR_016341) (124). In contrast to the logistic regres-
sion in Scanpy, the Seurat implementation is not a regularized pro-
cedure and is thus able to control for latent variables and to calculate
P values. To reduce computational burden, we ran “FindMarkers”
on a dataset with 1000 cells per cell class. As we found that output
statistics (regularized logistic regression coefficient in Scanpy and
log FC in Seurat) were highly concordant (fig. S18), we report
Scanpy results here as they included all possible cells.We considered
peaks to be differentially accessible if the regularized logistic regres-
sion coefficient > 0, the log FC > 0, and the t test Padj < 0.05.

snATAC-seq cell subtype analysis
To mitigate peak calling biases while allowing us to probe more
nuanced regulatory variation within cell populations, we called a
new set of cell class–specific peaks for each cell type with assigned
cells, skipping rarer cell types for which no snATAC-seq nuclei
passed our prediction threshold above.

Following scglue integration and assignment of snATAC-seq
cells to cell classes, we created cell class–specific pseudobulk epige-
nomes by aggregating all nonduplicate fragment endpoints for each
cell class. These cell class–level ATAC-seq data were then used for
peak calling using MACS3/v.3.0.0a6 (121, 122), with the same peak
calling parameters that we used for each sample and batch described
in the “snATAC-seq preprocessing” section above (“-g 2.7e9 --call-
summits --nomodel”). For each cell class, we repeated steps from
our snATAC-seq data generation pipeline to tabulate reads from
newly called peaks and to assemble sparse count matrices matrix
tabulating reads per cell barcode falling within the master set of
peaks and within gene bodies extended by 2 kb upstream. We
then imported peak-by-nucleus count matrices into the AnnData/
v.0.8.0 (102) framework.

To assign cell subtypes for our snATAC-seq data (fig. S15), we
repeated preprocessing, data integration, label transfer, and regula-
tory inference procedures described above on each cell class individ-
ually. In contrast to our global joint analysis, we only included
snRNA-seq nuclei deriving from samples that were profiled in
both snRNA-seq and snATAC-seq experiments and used the top
6000 most variable genes in our snRNA-seq analysis and used the
snATAC-seq peak sets specific to each cell type. The remainder of
our preprocessing and data integration procedures followed the
same pipeline described previously for our global integration anal-
ysis. For label transfer, we also followed largely the same procedures
as for our global label transfer pipeline. We did not, however, use a
label transfer confidence score threshold under the assumption that
snATAC-seq nuclei would, on average, be assigned to the correct
cell subtype and, if incorrect, would be assigned to a closely
related cell subtype (i.e., a neighboring subtype in the integrated
multidimensional cell space). For metacell-based regulatory

inference, we varied the settings for k based on dataset size to
target a mean of 50 transcriptomes per metacell.

Evolutionary analysis of candidate regulatory regions
We tested whether cCREs that were differentially accessible across
cell classes (called on the global dataset; N = 2838 of 3404 unique
cCREs; table S15) or cell class–specific (called within each of N = 7
cell classes; N = 469 of 5875 unique cCREs across all cell classes;
table S16) were associated with regions that underwent particularly
rapid evolution in the human lineage. We first obtained genomic
locations for two sets of evolutionarily salient regions, including
HARs (73) and HAQERs (74). The latter differ from the former
in that they are not limited to highly conserved regulatory elements
(74). We converted all HARs and HAQERs from the human
genome (hg19 or hg38, respectively) to the rhesus macaque refer-
ence genome (Mmul_10) (101) using UCSC’s liftOver/v.302
(RRID:SCR_018160) tool (125), allowing for multiple output
regions. We similarly obtained macaque genomic locations for
regions reported to exhibit differential accessibility between
human and chimpanzee cerebral organoids (DAHC) (75) using
this method (from hg19 to Mmul_10). Most regions were success-
fully converted for all datasets, although success rates were lower for
HAQERs, as expected [HARs:N = 2737 submitted,N = 6 failed,N =
2731 (99.8%) successfully converted into N = 2733 regions;
HAQERs: N = 1581 submitted, N = 383 failed, N = 1198 (75.8%)
successfully converted into N = 1417 regions; DAHC: N = 17,935
submitted; N = 261 failed; N = 17,674 (98.5%) successfully convert-
ed into N = 17,744 regions]. We used Fisher’s exact tests to test for
overlap between (i) differentially accessible cCREs and HARs,
HAQERs, and DAHC peaks (N = 3 tests) and (ii) cell class–specific
cCREs and HARs, HAQERs, and DAHC peaks (N = 21 tests). Using
the methods above, we also tested whether regulatory peaks
(cCREs) were enriched for evolutionarily salient gene sets, relative
to all detected peaks called on the global dataset [3404 of 1,189,415
(0.3%) peaks are cCREs]. P values were adjusted across all tests
using the Benjamini-Hochberg method (table S17).

TF binding site enrichment
For enrichment analyses at the cell class level, we focused on peaks
that were deemed accessible in one and only one cell class, which we
called “cell class–unique peaks.” We identified these peaks using
BedTools/v.2.30.0 (“intersect –v”) (RRID:SCR_006646) (126) to
find all peaks in a cell class that did not overlap with any peak
called in another cell class. The number of peaks identified in this
manner ranged from 655 (in ependymal cells) to 71,049 (in gluta-
matergic neurons). We tested for enrichment of TF binding motifs
in cell class–unique peaks compared to the background of the
rhesus macaque genome while controlling for GC content, imple-
mented in the monaLisa/v.1.3.1 (RRID:SCR_022802) (127) in R/
v.4.1.0 (table S11). We used the JASPAR 2018
(RRID:SCR_003030) nonredundant vertebrate core position
weight matrices (128).

At the cell subtype level, we tested for enrichment using the top
differentially accessible peaks among subtypes of the same cell class,
excluding peaks with regularized logistic regression coefficients < 0
(table S12). We retained the top first percentile of marker peaks,
ranked according to their regularized logistic regression
coefficients.
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Disease heritability enrichment
We calculated enrichment of disease-associated variants in cell
class–specific accessible chromatin regions using LDSC
(RRID:SCR_022801) (Fig. 6 and table S19) (77, 78). Because the
trait-associated loci are annotated in the human genome, we con-
verted all peaks (at the combined level as well as each individual cell
class level) from the rhesus macaque genome coordinates to
GRCh37 using UCSC’s liftOver/v.302 (RRID:SCR_018160) tool
(125). We followed the standard pipeline using the 1000 Genomes
baseline model and precomputed .sumstats files. A list of pheno-
types tested can be found in table S18.

Methods summary
Briefly, we collected fresh-frozen brains from five adult rhesus ma-
caques that were part of the free-ranging CPRC research colony on
Cayo Santiago. We focused our atlas on 30 anatomically defined
regions that are associated with key cognitive, behavioral, and
disease traits. To allow for the profiling of multiple genomic modal-
ities from the same representative cell populations, we pulverized all
samples on dry ice to homogenize and divide tissue for single-
nucleus sequencing. We generated snRNA-seq data from
2,583,967 nuclei spanning a total of 30 unique regions from both
hemispheres of the brain and paired those data with snATAC-seq
data from 1,587,880 28 regions across 28 unique regions. These
data were generated using sci-RNAseq3 (19) and sci-ATACseq3
(45) combinatorial indexing. Single-nucleus libraries were deeply
sequenced and processed using a uniform protocol that included
extensive QC filters (figs. S1 and S2).

Using Leiden-clustering on snRNA-seq nuclei (19), we identi-
fied 17 primary cell classes and then iteratively clustered each cell
class for deeper annotation of cell subtypes. Whenever external
data were available, we validated our cell classifications using an
NNLS approach (19) to identify correlations between cell subtypes
and annotated labels in reference datasets. We then identified
marker genes for each cell class and subtype, characterized the re-
gional distribution and expression of each cell class and subtype
across the brain, and identified cell-specific enrichment of
disease-associated genes.

To connect snATAC-seq profiles to snRNA-seq nuclei, we used
the GLUE integration approach (47), which allowed us to annotate
all snATAC nuclei based on the cell classes and subtypes identified
in our snRNA-seq data. These connections allowed us to carry out a
range of analyses, including TF binding site enrichment, linking TF
enrichment to and TF expression within cell types, and identifying
cell-specific regulatory links between cCREs and nearby genes. Last,
following coordinate liftover between the primate and human
genomes, we used LDSC (77, 78) to quantify enrichment of neuro-
logical disease-associated variants in cell class biased cCREs.

Raw sequencing data and the annotated count matrices are avail-
able through NeMO (RRID:SCR_016152), and protocols for data
generation are on protocols.io (DOI:10.17504/protocols.io.9yih7ue
and DOI:10.17504/protocols.io.be8mjhu6); and scripts to process
samples and recreate all analyses are available on GitHub (Data
and Materials Availability).
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